
Mr. Giansante

August 2018

Software Design:
Errors / When
Things Go Wrong

A software bug is an error, flaw, mistake, failure, or fault
in a computer program that prevents it from behaving as
intended (ex. producing an incorrect or unexpected
result). Most bugs arise from mistakes and errors made
by people in either a program's source code or its
design.
 Souce: wikipedia.org

When writing computer programs, three types of errors
can occur:

  Syntax errors
  Run-time errors
  Logic errors

Syntax errors

These are grammatical errors in the formulation of
statements. Syntax errors include such things as
misspelled commands and missing "."

Run-time errors

These are errors that cannot be detected until the
program is running. The syntax of the statements is
correct, but on execution they cause a situation to arise
that results in a crash or an undefined value. Error
handlers can be used to trap such errors and deal with
them. Examples of run-time errors are attempted
division by zero or trying to access a non-existent
object.

Logic errors

These are errors that cause the program to behave
incorrectly. They generally arise through failure on the
part of the programmer to arrive at a correct algorithm
for the task. Typical problems might be incorrect
ordering of statements, failure to initialise or re-initialise
a variable, assignment to an incorrect variable, use of
‘<’ instead of ‘<=’, use of ‘and’ instead of ‘or’, or
omission of a crucial step in the processing. Logic errors
may lurk in a program even when it appears to work -
they may only surface under certain conditions. This is
why careful testing is so important.

Errors and Bugs

A 2002 study funded by the National
Institute of Standards and Technology
estimated software errors cost the U.S.
economy about $59.5 billion a year.

"When Good Software Goes Bad"
from CNN.com (August 8, 2003)
by Jeordan Legon

Mr. Giansante philgiansante.com

Result of Bugs

The results of bugs may be extremely serious.

 Bugs in the code controlling the Therac-25 radiation

therapy machine were directly responsible for some
patient deaths in the 1980s.

 In 1996, the European Space Agency's US$1 billion

prototype Ariane 5 rocket was destroyed less than a
minute after launch, due to a bug in the on-board
guidance computer program.

 In June 1994, a Royal Air Force Chinook crashed

into the Mull of Kintyre, killing 29. This was initially
dismissed as pilot error, but an investigation by
Computer Weekly uncovered sufficient evidence to
convince a House of Lords inquiry that it may have
been caused by a software bug in the aircraft's
engine control computer.

Why are the called "Bugs"?

The story (which some people dispute the accuracy of)
goes that the term was first used by computer pioneer
Grace Hopper. Around 1947, Hopper was working on
the Mark II and Mark III computers at Harvard Faculty in
the Computation Laboratory. Operators traced an error
in the Mark II to a moth trapped in a relay, and therefore
called the problem a "bug". Hopper is also generally
credited with first using the term "debug" in reference to
fixing a problem with a computer program.

When Things Go Wrong

Mr. Giansante Software Development - Page 3

In an ideal world, software and hardware would always
work flawlessly, and users would never make mistakes.
Reality dictates that mistakes can and will happen. A
part of user interface design involves deciding how the
application will respond when things go wrong. A
common response is to display a dialog box, asking for
user input as to how the application should deal with the
problem. A less common (but preferable) response
would be to simply resolve the problem without
bothering the user. After all, the user is primarily
concerned with performing a task, not with technical
details. In designing your user interface, think about the
potential errors and determine which ones require user
interaction and which ones can be resolved
programmatically.

Creating Intelligent Dialog Boxes

Occasionally an error occurs in your application and it's
necessary to make a decision in order to resolve the
situation. This usually occurs as a branch in your
code ... an If-Then statement. If the decision requires
user interaction, the question is usually posed to the
user with a dialog box. Dialog boxes are a part of your
user interface, and like the other parts of the interface,
their design plays a role in the usability of your
application.

When creating dialog boxes for your application, keep
the user in mind. Does the message convey useful
information to the user? Is it easily understandable? Do
the command buttons present clear choices? Are the
choices appropriate for the given situation? Keep in
mind that it only takes one annoying message box to
give a user a bad impression of your application.

Handling Errors Without Dialog Boxes

It isn't always necessary to interrupt the user when an
error occurs. Sometimes it's preferable to handle the
error in code without notifying the user, or to warn the
user in a way that doesn't stop their work flow. A good
example of this technique is the AutoCorrect feature in
Microsoft Word: if a common word is mistyped, Word
fixes it automatically; if a less common word is
misspelled, it is underlined in red so the user can
correct it later.

There are a number of techniques that you can use; it's
up to you to decide which techniques are appropriate
for your own application. Here are a few suggestions:

Add an "Undo" function to the "Edit" menu.
Rather than interrupting the user with a confirmation
dialog for deletions and so forth, trust that they are
making the right decision and provide a Undo function
in case they change their mind later.

Display a message on a status bar or icon.
If the error doesn't affect the user's current task, don't
stop the application. Use a status bar or a brightly
colored warning icon to warn the user ... they can
handle the problem when they are ready.

Correct the problem.
Sometimes the solution to an error is obvious. For
instance, if a disk is full when the user tries to save a
file, check the system for space on other drives. If space
is available, save the file; put a message on the status
bar to let the user know what you did.

Save the message until later.
Not all errors are critical or demand immediate attention;
consider logging these to a file and displaying them to
the user when they exit the application or at another
convenient time.

Don't do anything.
Sometimes an error isn't important enough to warrant a
warning. For instance, the fact that a printer is out of
paper doesn't mean much until you're ready to print.
Wait until the message is appropriate to the current
task.

