
Mr. Giansante

August 2018

C++ Programming

Math with C++

Mr. Giansante philgiansante.com

Source:
Lesson 12 - Mathematical functions in C++ - The cmath library
by David Capka
https://www.ict.social/cplusplus/course/basics/
mathematical-functions-in-cplusplus-the-cmath-library

cmath Standard Library

The cmath standard library provides a variety of
functions for solving common math problems.

 #include <cmath>

Basic Mathematical Operators

You can use the following mathematical operators when
writing equations:

 + Addition
 - Subtraction
 * Multiplication
 / Division
 % Remainder from Division (modulo)

Order of Operations

C++ follows the standard rules for the order in which it
evaluates operations. This is sometimes refered to as
"BEDMAS".

Brackets

Exponents

Division in order

Multiplication they appear

Addition in order

Subtraction they appear

Example - Converting Temperature

The formula to convert Fahrenheit (°F)
to Celsius (°C) is:

 °C = (°F - 32) x

In C++, we could declare 2 variables and use the
following formula:

 C = (F - 32) * (5.0 / 9.0);

Math with C++

9

5

Division

Programming languages often differ in how they
perform the division of numbers. You need to be aware
of these issues to avoid surprises

Example.

 int a = 5 / 2;
 double b = 5 / 2;
 double c = 5.0 / 2;
 double d = 5 / 2.0;
 double e = 5.0 / 2.0;
 int f = 5 / 2.0;

 cout << "a=" << a << ", b=" << b << ",
 c=" << c << ", d=" << d << ", e=" << e
 << ", f=" << f << endl;

We divide 5/2 several times in the code. Mathematically,
it's 2.5. Nonetheless, the results will not be the same in
all cases. Can you guess what we'll get in each case?

The program output will be as follows:

 a=2, b=2, c=2.5, d=2.5, e=2.5, f=2

We see the result of this division is sometimes decimal
and sometimes whole.

The data type of the variable we're assigning the result
to is not all that matters. What matters most is the data
type of the numbers we divide by. If one of the numbers
is decimal, the outcome will always be a decimal
number.

The division of 2 integers always returns an integer.

Keep in mind that if you compute the average and want
a decimal result, at least one variable must be cast to
double.

 int sum = 10;
 int count = 4;

 double average = (double)sum / (double)count;

Math with C++

Mr. Giansante philgiansante.com

round(), ceil(), floor(), and trunc()

All these functions are related to rounding and they all
accept a parameter of the double type. Their return
value is also of the double type.

 round() takes a decimal number as a parameter

and returns the number, rounded as a
double data type. It rounds in the same
way we learned in school (anything
over 0.5 is rounded upwards, otherwise
the number is rounded downwards).

 ceil() rounds upwards no matter what

 floor() rounds downwards no matter what

 trunc() cuts the decimal part off and leaves the

whole number part intact (does not
round it whatsoever).

If you think that floor() and trunc() do the same thing,
think again! They behave differently for negative
numbers. floor() rounds negative numbers down to an
even "more negative" number, trunc() always rounds to
zero when the input is negative.

sin(), cos(), tan()

Classic trigonometric functions, all take an angle which
has to be entered in radians (not degrees).

To convert degrees to radians we multiply them by
(M_PI / 180)

acos(), asin(), atan()

Inverse trigonometric functions, which return the original
angle according to the trigonometric value. They're the
inverse functions for sin(), cos(), and tan().

The parameter is a function value and the returned
value is the original angle in radians (returned as a
double).

If we wanted to get an angle in degrees, we'd have to
divide the radians by (180 / M_PI)

Remainder from Division

% (modulo) returns the remainder after dividing integers.
This can be useful, for example if you want to determine
if a number is even (ie. divisible by 2).

 if(myNum % 2 = 0)
 { cout << "Number is even"; }

abs()

abs() returns the absolute value of its parameter.

pow()

pow() takes two input parameters. The first is the base
of the power and the second is the exponent.

Example. Calculate 2

3

 cout << pow(2, 3);

sqrt()

Sqrt() is an abbreviation of SQuare RooT, which
returns the square root of the number given as a double.

General Root

C++ lacks any general root function. However, we can
use the rules of exponents to solve this problem.

Example. Calculate the 3rd root of 8.

Recall that

Therefore, we can write:

 cout << pow(8, (1.0/3.0));

Note: It is very important to write at least one number
with a decimal point when we are dividing, otherwise,
C++ will assume that we want it to apply whole-number
division, and the result would have been 80 = 1 in this
case.

313 88 

